أقسام الوصول السريع (مربع البحث)

 البرهان الاستدلالي
وهو استخدام مفاهيم وحقائق هندسية سابقة لاثبات أخرى جديدة.

س/ هل عَرَفْتَ المقصود من "البرهان الاستدلالي" ؟

* درسنا سابقاً نظريات ونتائج وحقائق هندسية ........ والآن نستخدم تلك الحقائق والنظريات والنتائج لاثبات اخرى جديدة ... وهذا هو معنى "الاستدلال"

وعموماً البرهان هو الخطوات المستخدمة لإثبات حقيقة أو مطلوب ما عن طريق معطيات ومعلومات سابقة.

وبتوفيق الله تكتب احسن برهان

# السؤال يحتوي على معلومات (معطيات)

# كل مُعطَى له هدف جاء من أجله.

# ليس هناك مُعطى عاطل

# ماذا نريد من السؤال ؟ نريد اثبات المطلوب عن طريق البرهان.

# كيف نخطط لاثبات (برهان) مطلوب ما ؟

#  (بما أن) + مُعطى =  (إذاً) + نتيجة

# وكل خطوة تؤدي لأخرى.

أمثلة على استخدام البرهان لإثبات بعض الحقائق

مثال 1 اثبت أنه إذا تقاطع مستقيمان فإن كل زاويتين متقابلتين بالرأس تكونان متساويتين في القياس.

الإجابة

المعطيات



المطلوب :- اثبات أن 

البرهان :-مستقيمة = 180°

 (2) تكمل (1)   (1)

 (2) تكمل (3)    (2)

من (1) ، (2) ينتج أن (1) = (3)

 =  أي أن

* إذاً إذا تقاطع مستقيمان فإن كل زاويتين متقابلتين تكونان ................


مثال 2 : اثبت أن مجموع قياسات الزوايا المتجمعة حول نقطة 360°

الإجابة

المعطيات كل منهم شعاع بدايته م 

المطلوب :- اثبات أن مجموع قياسات الزوايا التي تجمعت عند النقطة م يساوي 360°

العمل :- نرسم أحد الأشعة على استقامته ليكون مستقيماً وليكن .. نرسم

البرهان :- مستقيمة

 (1) ، (2) متجاورتان لأن ضلعيهما المتطرفين على استقامة واحدة

 (1) + (2)  = 180° (1)

وبالمثل  (3) + (4)  = 180° (2)

وبالجمع   = 180° + 180° = 360° #

وهي الزوايا التي تجمعت حول النقطة م

تمارين على البرهان الاستدلالي

أكمل :-

1- مجموع قياسات الزوايا المجمعة حول نقطة = ........°

2- الزاويتان المتقابلتان بالرأس تكونان ..........

3- إذا قطع مستقيم مستقيمين متوازيين فإن .

(1) .................

(2) ...................

(3) ..................

3- يتطابق المثلثان إذا ...

(1) .................

(2) ...................

(3) ..................

5- مجموع قياس الزاويتين المتجاورتين اللذان امتدا طرفاهما على استقامة واحدة .........°

6- يتطابق المثلثان القائما الزاوية إذا ............

أكمل :-

7- الزاوية التي قياسها 75° تقابلها بالرأس زاوية قياسها ........°

8- الزاوية 36° تتم الزاوية .......° وتكمل ......°

مثال 1 في الشكل المقابل

مثال 2 في الشكل المقابل

أوجد قياس كل زاوية بالبرهان

مثال 3 في الشكل المقابل

  ،

 مستطيل

أثبت أن

 

مثال 4 : اثبت أن المستقيم العمودي على أحد مستقيمين متوازيين فإنه يكون عمودياً على الآخر.


البرهان الاستدلالي

البرهان الاستدلالى

البرهان الاستدلالى للصف الاول الاعدادى

شرح درس البرهان الاستدلالي

شرح درس البرهان الاستدلالى

البرهان,البرهان الاستدلالى اولى اعدادى

تعريف البرهان الاستدلالي

مراجعة علي البرهان الاستدلالي

البرهان الاستدلالي اولي اعدادي

البرهان الاستدلالي 

البرهان الاستدلالي للصف الاول الاعدادي

البرهان الاستدلالي الصف الاول الاعدادي

شرح البرهان الاستدلالى للصف الاول الاعدادى الترم الثانى

حل البرهان الاستدلالي

تعليقات